Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast.

Identifieur interne : 001934 ( Main/Exploration ); précédent : 001933; suivant : 001935

Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast.

Auteurs : Katrin Düvel [États-Unis] ; Arti Santhanam ; Stephen Garrett ; Lisa Schneper ; James R. Broach

Source :

RBID : pubmed:12820961

Descripteurs français

English descriptors

Abstract

Tor proteins, targets of the antiinflammatory drug rapamycin, mediate a conserved signaling pathway required for cell growth and proliferation in eukaryotes. By global transcriptional analysis of Saccharomyces cerevisiae, we have examined the role of the essential protein Tap42 in transcriptional regulation by Tor. We find that Tap42 inactivation, like rapamycin addition, prolongs activation of stress response genes. In contrast, Tap42 inactivation, as does inactivation of the protein phosphatases Sit4 and Pph21/22, blocks rapamycin induction of nitrogen discrimination pathway genes. Tap42 inactivation neither affects ribosomal protein gene expression nor blocks rapamycin-induced repression of these genes. These results indicate that Tap42 can both inhibit and activate protein phosphatases and provide insight into the complex events underlying TOR regulation of transcription.

DOI: 10.1016/s1097-2765(03)00228-4
PubMed: 12820961


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast.</title>
<author>
<name sortKey="Duvel, Katrin" sort="Duvel, Katrin" uniqKey="Duvel K" first="Katrin" last="Düvel">Katrin Düvel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton, NJ 08544</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Santhanam, Arti" sort="Santhanam, Arti" uniqKey="Santhanam A" first="Arti" last="Santhanam">Arti Santhanam</name>
</author>
<author>
<name sortKey="Garrett, Stephen" sort="Garrett, Stephen" uniqKey="Garrett S" first="Stephen" last="Garrett">Stephen Garrett</name>
</author>
<author>
<name sortKey="Schneper, Lisa" sort="Schneper, Lisa" uniqKey="Schneper L" first="Lisa" last="Schneper">Lisa Schneper</name>
</author>
<author>
<name sortKey="Broach, James R" sort="Broach, James R" uniqKey="Broach J" first="James R" last="Broach">James R. Broach</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12820961</idno>
<idno type="pmid">12820961</idno>
<idno type="doi">10.1016/s1097-2765(03)00228-4</idno>
<idno type="wicri:Area/Main/Corpus">001928</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001928</idno>
<idno type="wicri:Area/Main/Curation">001928</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001928</idno>
<idno type="wicri:Area/Main/Exploration">001928</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast.</title>
<author>
<name sortKey="Duvel, Katrin" sort="Duvel, Katrin" uniqKey="Duvel K" first="Katrin" last="Düvel">Katrin Düvel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton, NJ 08544</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Santhanam, Arti" sort="Santhanam, Arti" uniqKey="Santhanam A" first="Arti" last="Santhanam">Arti Santhanam</name>
</author>
<author>
<name sortKey="Garrett, Stephen" sort="Garrett, Stephen" uniqKey="Garrett S" first="Stephen" last="Garrett">Stephen Garrett</name>
</author>
<author>
<name sortKey="Schneper, Lisa" sort="Schneper, Lisa" uniqKey="Schneper L" first="Lisa" last="Schneper">Lisa Schneper</name>
</author>
<author>
<name sortKey="Broach, James R" sort="Broach, James R" uniqKey="Broach J" first="James R" last="Broach">James R. Broach</name>
</author>
</analytic>
<series>
<title level="j">Molecular cell</title>
<idno type="ISSN">1097-2765</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (MeSH)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Drug Resistance (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Genes, Suppressor (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphoprotein Phosphatases (genetics)</term>
<term>Phosphoprotein Phosphatases (metabolism)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Temperature (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Transcription Factors (drug effects)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Facteurs de transcription (effets des médicaments et des substances chimiques)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Gènes suppresseurs (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Phosphoprotein Phosphatases (génétique)</term>
<term>Phosphoprotein Phosphatases (métabolisme)</term>
<term>Protéines adaptatrices de la transduction du signal (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Résistance aux substances (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Température (MeSH)</term>
<term>Transcription génétique (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphoprotein Phosphatases</term>
<term>RNA, Messenger</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Phosphoprotein Phosphatases</term>
<term>RNA, Messenger</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Saccharomyces cerevisiae</term>
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Facteurs de transcription</term>
<term>Noyau de la cellule</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Resistance</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Genes, Fungal</term>
<term>Genes, Suppressor</term>
<term>Models, Biological</term>
<term>Mutation</term>
<term>Signal Transduction</term>
<term>Temperature</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Gènes fongiques</term>
<term>Gènes suppresseurs</term>
<term>Modèles biologiques</term>
<term>Mutation</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Résistance aux substances</term>
<term>Température</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tor proteins, targets of the antiinflammatory drug rapamycin, mediate a conserved signaling pathway required for cell growth and proliferation in eukaryotes. By global transcriptional analysis of Saccharomyces cerevisiae, we have examined the role of the essential protein Tap42 in transcriptional regulation by Tor. We find that Tap42 inactivation, like rapamycin addition, prolongs activation of stress response genes. In contrast, Tap42 inactivation, as does inactivation of the protein phosphatases Sit4 and Pph21/22, blocks rapamycin induction of nitrogen discrimination pathway genes. Tap42 inactivation neither affects ribosomal protein gene expression nor blocks rapamycin-induced repression of these genes. These results indicate that Tap42 can both inhibit and activate protein phosphatases and provide insight into the complex events underlying TOR regulation of transcription.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12820961</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>08</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1097-2765</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2003</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Molecular cell</Title>
<ISOAbbreviation>Mol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>1467-78</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Tor proteins, targets of the antiinflammatory drug rapamycin, mediate a conserved signaling pathway required for cell growth and proliferation in eukaryotes. By global transcriptional analysis of Saccharomyces cerevisiae, we have examined the role of the essential protein Tap42 in transcriptional regulation by Tor. We find that Tap42 inactivation, like rapamycin addition, prolongs activation of stress response genes. In contrast, Tap42 inactivation, as does inactivation of the protein phosphatases Sit4 and Pph21/22, blocks rapamycin induction of nitrogen discrimination pathway genes. Tap42 inactivation neither affects ribosomal protein gene expression nor blocks rapamycin-induced repression of these genes. These results indicate that Tap42 can both inhibit and activate protein phosphatases and provide insight into the complex events underlying TOR regulation of transcription.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Düvel</LastName>
<ForeName>Katrin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Santhanam</LastName>
<ForeName>Arti</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garrett</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schneper</LastName>
<ForeName>Lisa</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Broach</LastName>
<ForeName>James R</ForeName>
<Initials>JR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA 41086</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM 44666</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell</MedlineTA>
<NlmUniqueID>9802571</NlmUniqueID>
<ISSNLinking>1097-2765</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C100984">TAP42 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D010749">Phosphoprotein Phosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004351" MajorTopicYN="N">Drug Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016153" MajorTopicYN="N">Genes, Suppressor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010749" MajorTopicYN="N">Phosphoprotein Phosphatases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
<ArticleId IdType="pii">S1097-2765(03)00228-4</ArticleId>
<ArticleId IdType="doi">10.1016/s1097-2765(03)00228-4</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Broach, James R" sort="Broach, James R" uniqKey="Broach J" first="James R" last="Broach">James R. Broach</name>
<name sortKey="Garrett, Stephen" sort="Garrett, Stephen" uniqKey="Garrett S" first="Stephen" last="Garrett">Stephen Garrett</name>
<name sortKey="Santhanam, Arti" sort="Santhanam, Arti" uniqKey="Santhanam A" first="Arti" last="Santhanam">Arti Santhanam</name>
<name sortKey="Schneper, Lisa" sort="Schneper, Lisa" uniqKey="Schneper L" first="Lisa" last="Schneper">Lisa Schneper</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Duvel, Katrin" sort="Duvel, Katrin" uniqKey="Duvel K" first="Katrin" last="Düvel">Katrin Düvel</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001934 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001934 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12820961
   |texte=   Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12820961" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020